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Pore-level modeling of drainage: Crossover from invasion percolation fingering to compact flow
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A pore-level model of drainage, which has been quantitatively validated, is used to study the effect of
increased injection raté.e., increased capillary numbeupon the flow, with matched-viscosity fluids. For
small enough capillary number, the flows from the model correctly reproduce the flows from the invasion
percolation with trappindIPWT) model. As the capillary number is increased, the early-time flows mimic
those of the IPWT-model, but then deviate towards compact flow at a characteristic time that decreases as the
capillary number increases. That is, the larger the capillary number, the sooner the flow crosses over from
IPWT flows towards compadtinearn flows.
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[. INTRODUCTION pore-level model similar to that of Chen and Wilkingdr8],
Lenormand[6], and Blunt and King[7]. That is, we per-
Flow through porous media is a subject of scientific andformed pore-level modeling of the injection of a less viscous
engineering interest for a number of reasons, e.g., enhancédid into a model porous medium saturated with a more
oil recovery, DNAPL remediation, and geologic ¢€eques-  Viscous fluid, with viscosity ratioM = u, /up<1, and zero
tration. For half a century, flow in porous media has beersurface tension. We found that initially the fluid injection
treated as a compaéie., Euclideah process whereby the Was described by DLA fractals; but as the fluid advanced, the

interface advances linearly with the total amount of injected”jemiorf‘ ?}eca_me compact g[? a time scr?le relalllted rt]o the in-
fluid. This assumed behavior is predicted by a Darcy’s law’/€'S€ Of the viscosity ratio, i. Hence, the smaller the vis-
treatment, which uses saturation-dependent relative permgps't}/ ratio, the longer it took for the flqw behavior to “cross
abilities, such as those of Buckley-Leverett or Koj/a5]. over” from fractal to compact behavior, so that the only

: . flows that remained fractal were those in the zero viscosity-
For the past two decades, it has been appreciated that flow Htio limit [11-14,28. This crossover was observed in both
porous media is fractal in certain well-defined limi6s-15]. -y

he limit of . . M = 110 /e — 0 (i : two- and three-dimensional flowd1,14); the crossover af-
In the limit of zero viscosity ratioM =, /up=0 (i.e., ratio  fecteq hoth the saturation of injected fluid and the interfacial

of _the viscosity c_)f the injected fluid to that of the dis_ple_tcedwidth [12,13. The behavior of this crossover enabled us to
fluid), the flow is known to be modeled by self-similar, characterize the dependencies of saturation and fractional
diffusion-limited-aggregatiofiDLA) fractals[6—-10,15-20  fiow upon the viscosity ratio, in the long-time, compact limit
Here, the injected fluid has zero viscosity and the d'Splace@Buckley-Leverett flow to which the assumptions of stan-
fluid has finite viscosity. In the limit of zero-capillary num- yarg Darcy’s law flow apply.

ber, where the injection velocity is infinitesimal=0 (i.e., Recently, we have modified our earlier code to include the
quasistatic injection) the flow is known to be modeled by effect of capillary forces to study drainage, where a nonwet-
self-similar, invasion percolation fractdlg1,15. The defini- ting fluid displaces a wetting fluifi29]. In this paper, we

tion of the capillary number is focus on the role of capillary forces, which needs to be un-
derstood before we undertake the more complicated study of
N¢=pupV/o cosé, (1) the simultaneous effect of both viscous and capillary forces.

Given this focus, we fixed the viscosity ratio at the value

i.e., the ratio of the viscous drag forcégiscosity of the unity (viscosity matchingso that the two fluids have identi-
displaced fluid times average fluid velocityp V) to the cap-  cal behavior except for the role of capillary forces. At suffi-
illary forces (proportional to interfacial tensioor times co-  ciently low capillary numbers, we have demonstrated that
sine of the contact anglé). The invasion percolation model our model correctly reproduces the zero-capillary number re-
has been widely investigated both to determine its fundasults from the invasion percolation with trappitPWT)
mental properties and to determine its predictions for practimodel[29]. Having validated our model in the limit of small
cal problemg8,15,21-27. capillary number, where the flow exhibits fractal fingering,

In a series of papers, we studied unstapiscosity ratio  we study the effect of increased capillary number on the
M<1), miscible (zero surface tensigninjection using a flow.
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Section 1l briefly discusses salient features of our poreences, andb) complications, such as overfilled pore bodies
level model of immiscible drainage; a more detailed descrip-or plugs of fluid trapped in the pore throats, are treated as
tion is presented in the Appendix. Sections Ill and IV presenphysically as possiblg29].
results for a variety of capillary numbers, which show that (v) Most importantly, these flow rules accurately account
initially the flows are fractal, mimicking those of the IPWT for all of the nonwetting fluid injected into the porous me-
model but that these flows become compéinkar or stable  dium, from initiation through breakthrough over thousands
after a characteristic time varying inversely with the capillaryof time steps. For the smallest capillary number, there is a
number. Section Il presents results for the first moment 00.25% difference between tlig) total volume of nonwetting
the injected fluid, which tracks the average position of thefluid injected into the medium an) the total volume of
injected fluid as it invades the model porous medium fornonwetting fluid occupying the medium as determined by the
several system sizes. Initially, these results for the time deflow rules. For the largest capillary number, this difference is
pendence of the average position of the injected fluid ardess than 0.01%.
identical to results for the average position of the injected (vii) Our model has been quantitatively validated in the
fluid from the IPWT model for the same model porous me-very different limits of zero-capillary numbefagreement
dium; however, at a characteristic time, the motion of thewith the IPWT model and zero viscosity ratigagreement
injected fluid deviates from the fractal IPWT model behaviorwith DLA) [29].
and approaches a line@onstant spegdime-dependent ad-
vance of the fluid. This characteristic time is observed to
decrease with increasing capillary number. Section IV pre- Ill. RESULTS—CROSSOVER IN THE AVERAGE
sents results for the growth of correlations both parallel and POSITION OF THE INJECTED FLUID, (x(t))
perpendicular to the flow. Consistent with the behavior of the | thjs section, we study the flow as it deviates from the

average position of the injected fluid, the correlations ini-|p\wT model as capillary number increases. Figure 1 com-
tially mimic the IPWT model behavior but then break away pares the near-breakthrough flow patterns for the IPWT
at a characteristic time approaching the behavior expecteghodel [Fig. 1 (upper lefi] with the near-breakthrough pat-
from linear flow. These results, showing crossover from th&erns for the model with increasing capillary number. For the
IPWT model flow to compact flow in the average position of g gjjest capillary number showh,,=2.7< 10", one sees
the injected fluid_, are qualit_atively similar to experimental gome additions to the IPWT model pattern, especially in the
results for the width of the interfade0]. However, to our |eft-hand third of the figure. As the capillary number is in-
knowledge, this is the first quantitative observation and Charcreased, the patterns deviate more and more strongly from
acterization of the crossover from demonstrably IPWTine iPWT model.
model flow at early times towards compact flow at later pecause of the engineering interest in maximizing the
times. amount of injected fluidenhanced oil recovery and carbon
dioxide sequestrationit is important to understand how the
injected fluid occupies the medium. For this reason, our
study has investigated the average positipf, of the in-
Our model is a generic pore-level model of the type thatfected fluid as a function of the total amount of injected fluid.
has been widely used for the past two decafdies18,11— Since we found, as will be seen, that the IPWT model rep-
14,16-18,21,23,24,31-B6Although our model has many resented the baseline behavior, it is useful to first study the
features in common with these other pore-level models in théme dependence ofx(t)) for the IPWT model[29]. All
literature, we choose to describe the model in some detail idistances are in units of the distance between rows of our
the Appendix so that the reader can understand how outiamond latticgFig. 17), which we have chosen to be unity.

Il. FEATURES OF THE PORE-LEVEL MODEL

model compares to the others. All volumes are in units of the volume of a pore body, which
Salient features of our pore-level model include the fol-we have chosen to be unity.
lowing. Our investigation determines the average positignof

(i) Our model is intended to incorporate, as realistically aghe injected fluid as a function of the injected voluivieor
possible, both the capillary pressure that tends to block thenassm or time. Since our program maintains a constant
invasion of narrow throats and the viscous pressure drop in @olume flowq to within a fraction of a percent, the volume is
flowing fluid. directly proportional to the timey=q t, as is the mass of

(i) The diamond lattice structure assures that all throatsur incompressible fluids. An additional advantage of deter-
are geometrically equivalent with regards to the averagenining the time dependence ¢f(t)) is its simple relation-
flow, in that the throats are not either parallel or perpendicuship to fractal dimension for fractal flows like those from the
lar to the average flow as they would be for a square latticéPWT model. Since the mass of a fracta, is related to the
array. linear dimension(x), t«m=A(x)P1~1, then(x(t)) is given

(i) All elements of the porous mediufpore throats and by
pore bodies have volumes that can be occupied by either
fluid. _RtlDi—1)_pilte

(iv) We have tried to make the flow rules as nonrestrictive {x(1))=Bt =Bt 2
as possible in thata) locally, back flow as well as forward
flow are allowed, as ordained by the local pressure differwhich defines the exponent
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FIG. 1. Comparison of the near-breakthrough IPWT model pattgpper lef} with the near-breakthrough patterns for three capillary
numbers N,=2.7x10 %, 5.4x10 % and 21.6<10 °) using the same realization of a 8@5 model porous medium. The periodic
boundary conditions cause the finger growing at the upper right of the IPWT model pattern to extend into the upper left-hand side of this
pattern.

A. Results—Limit of the IPWT model This value of the exponentfle =1.13 is consistent with

Figure 2 shows data from a variety of IPWT simulations the fractal dimensiod;=1+1/(1+¢)=1.89, from perco-
from systems with the size of our flow-model simulations'ation theory[39]. This value of fractal dimension is some-
(30X 90 up to 30 270 with a few thousand pore bodjes what larger than that found in other studies of the IPWT

much larger systems (40@500 with 1§ pore bodies Our modeI,Df=_1.82 [9’10’_15' However, given th_e noise in our
definition of “time,” t=(m/w)+0.91, has the following ad- data, the different lattice structure and the different methods

vantages for determining fractal dimension, differences of 4% may not
. ' . be surprising. These data are sufficiently noisy that the
(i) We use the mass (equivalently the volume, both b g y y y

proportional to the physical timewhich will enable us to demonstrate only a slight preference fy=1.89 over the
. valueD;=1.82, which resulted from box counting on larger
compare the fractal character from computer experlmentgystemg[g9 15
with different flow velocities and capillary numbers. o
(ii) The time therefore, has the same dimensions as vo
ume, i.e., the unit volume of a pore body.

(iif) Given our uniform injection along the width of the

_ We have focused on “short, wide” systems because expe-
Irience has shown that flows in long narrow systém&en in
square systemscoarsen from many growing fractal fingers

to one growing finger. This causes significant deviations

model, we divide the mass by the number of pore bodie :
along the widthw so that the time is unaffected by the width ?;?&:{:ﬁ:aslifgvgﬁgéi\slvzhﬁﬁg‘gze wider the system, the less

of different size models even though the mass would be pro-
portional to the width.

(iv) The additive constant of 0.91 makes the power law in B. Results from the flow model with finite capillary number

Eqg. (2) applicable over the greatest ran@fe the smallest Most of the results from the flow model are from systems
times and arises from the discrete vs, continuous argumentsither 30< 90 or 30< 135 pore bodies. Because invasion per-
of our earlier miscible flow work37]. colation is such a noisy process, it proved difficult to study

(v) the exponent + £ =1.13 represents the best fit to this the change from invasion percolation to more pistonlike
data biasing the data from the large systems more heavilffow. To show the effect of the noise and how the change
than the data from the small systems. away from the IPWT model occurs, FiggaB-3(d) compare
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FIG. 2. The fractal scaling dfx(t)) from the IPWT model on a

variety of systems sizes averaging over a variety of numbers of
realizations(sampleg [38]. Specifically this figure shows the data . .
from systems of size 4002500 from averaging over nine realiza- FIG. 3. (9—(d) Comparisons of flow-model resulésolid lines

. - e )
tions (OJ), systems of size 1801080[from averaging over 30 re- for_two Cap'ﬂf.}r_y numbersmc—_2.65>< 1.0 in the top figures and
alizations(<) and over five realizationé4 )], systems of size 90 Ne=5.3x10 i the bottom f_|gure)svx{|th _results from the IPWT

X 540[from averaging over 20 realizatioi®) and over only five model(dashed linesfor t.he typical reallzatlons ngmber(l]eft-ha.nd

of the realizationd®)], systems of size 30135 from averaging f!gures and number Z{rlght—ha_nd figuresof the five total realiza-
over 20 realizationgV), systems of size 3090 [from averaging tions. _Note tha_t the dashed-_llne_ curvése IPWT T“Ode' are the
over 20 realizationg+), over seven selected realizations), and ~ Same in both figures for realization numbetalso in both figures
over the five realizations used for the flow mo¢i@)]. All distances ~ fOF realization number 2 All distances are in terms of the unit
are in terms of the unit distance between rows of the diamondj'St"’_‘nce between rows of the diamond lattice; all times and volumes
lattice; all times and volumes are in terms of the unit volume ofd€n terms of the unit volume of each pore body.

each pore body. .

P y too strong a dependence. Clearly, this form for the character-
results for invasion percolatiofashed lingwith the corre- istic time provides a credible collapse of the data so that
sponding results from our modgdolid line) for two capillary x(1))=0.44811% (1/ 4
numbers for the quantityx)/(0.44%%'3. The results from (x(©)=0. (t/n), @
the model begin by following the invasion percolation results  To ascertain the significance of size effects, we have com-

quite closely but then deviate at a later time, which decreasesined the data from Figs. 6 and 7 in Fig. 8. It is tempting to
as the capillary number increases.

To best characterize the deviations from the IPWT model «x /x >
results for each of the five realizations, we determined the ™ "
ratio ch(t)/x,p(t) until there were significant, sustained de-

viations from unity; from that point on we used the ratio
Xn ()/Xipadt), wherexpq,{t)=0.448"1% These determi-
nations of the ratios were then averaged over the five real-
izations for each capillary number. These results are pre- 08
sented in Fig. 4 for the systems that are<3@D and in Fig. 5
for the systems that are 3a.35. From these figures, it is
clear that initially the flows mimic the IPWT model but then 0.6
deviate at a later, characteristic time; it is also clear that the
larger-capillary-number flows begin to deviate at earlier 05 ‘ e
times. 1 10
To estimate the dependence of the characteristic time
upon capillary number, we have attempted to collapse all of FIG. 4. Data from averagingy (t)/xp(t) over five realizations
the data onto one curvésee Figs. 6—8 The form of the for the 30<90 systems for a variety of capillary numbeis=5.3
characteristic time which most effectively accomplishes this<10™° (8), N;=8.8<107° (@), N,=1.33x107° (+), N.=2.65
collapse is X 107° (), Ng=5.3x10"° (O), N;=1.06<10"* (>), N;=2.12
X10"* (d), N;=8.8x10"* (H). Note: at smallt, the value is
7(Ng)~0.02ZIn(1/N)}%° (3)  ~1.00+0.05, so that the noise is reduced from the case in Fig. 3

. . . where the values are1.0+0.3. Figure 2 shows that simply aver-
where our crude estimate of the uncertainty in the exponerdging over several realizations does not significantly reduce the

is 2.5+0.5, in that 2.0 is too weak a dependence and 3.0 isoise, especially for these small, near-IPWT model systems.

0.9

0.7t
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FIG. 7. The collapse of the data from Fig. 5 using the charac-
FIG. 5. Data from averagingy (t)/xp(t) over five realizations teristic time in Eq.(3) for capillary number§N.=1.33x 10 ° (+),
for the 30x135 systemsN,=1.33x107° (+), N;=2.65<10° N =2.65x10 ° (O), N;=5.3x107° (O), N,=2.12x10 * (),
(0), N.=5.3x10"% (0), N.=2.12<10"* (4), N,=8.8x10"%  N,=8.8x10* (W)].
().

natural to assume that the flows are becoming linear in that

assume that Fig. 8 shows a size dependence in the data, Sing@ interface(or average position of the injected fljiidd-

the crossover for the wider systems occurs slightly later thajances linearly with time. However, Fig. 10 shows that, at

that for the 30<90 systems. However, further investigation preakthrough, our flows in these small systems have not yet
shows that this apparent size dependence is random, likelychieved linearity. This figure also shows that the crossover
related to the noise in these small, near-IPWT model Sysqoes not occur at one point but over a temporal region of
tems. Demonstrating the lack of a systematic size depeninite width.

gifnce, tFig'.dt% Sh?r:lvfh the same p.llcl)t for se\geral_r?ystems of In Fig. 10, we normalized the ratioey, /xip) used in the
ol/eerr?jr;e\;vlnot Z)V(lcur :’t Z?(chtl C?ﬁ; zasgmneur:haer;ctereisgiozfx; revious figures by the appropriate time factor so that linear
y Estable) flow at long times would be a horizontal linge.,

for all systems; but the variations appear ra_ndom ra_ther thz.iwith zero slopg on the graph. Note that the small-capillary-
systematic, and these variations are of a size that is cons

X . . 'Rumber fractal regime is increasing with a slope 0.13; how-
trﬁgfj:l”g;/s(t)gr]r?sr q_?]'iz ealc; tc))ssekr]\(/)t\a,\(/:ls 'trr]];nggesg;g::’tsnggr:;vgﬁyer, the large-capillary-number _regime has not reachv_ed con-
nificantly affect.our results %tancy at breakthro_uqllhe latest times shownThe negative

The evidence presented shows that initial flows are th&oPe Of the late-time, large-capillary-number plots shows
IPWT model fractals but that the flows deviate from this(%hat _the flow 1S occupying the.smadlreglmes of the porous
medium; obviously, this negative slope cannot be maintained

fractal behavior at a characteristic time that decreases as oﬂ%efinitely because eventually the whole porous medium
moves away from the IPWT model limite., as the capillary would be filled and the interface would have to advance lin-

number |r}cr.easéesWe ha\{e estlmated thg dependence O.f theearly with the amount of fluid injected. Since our simulations
characteristic crossover time in E®) and in Figs. 6—8. Itis

have not achieved linear flow at the latest time accessible to
these simulated flows, we will call these intermediate or

X\ %> prelinear-flow times.
L | <X /X > ' '
NP
0.9
08|
Ir size 30x135 ]
0.7} 09l
, 0.8
o8 size 30x90
0.7}
05— P ————
0.01 0.1 25
t/{In(1/Nc)} : 0.6}
FIG. 6. The collapse of the data from Fig. 4 using the charac- 0.5 ——————p3 : S
teristic time in Eq.(3) for capillary numbergN,=5.3x 106 (@), t/4In(1/N )}2'5
N,=8.8x10 ® (@), N,.=1.33x107% (+), N,=2.65x 10 ° (0O), n c
N.=5.3x10"° (O), N;=1.06x10 % (>), N,=2.12x10"* (»),
N,=8.8x104. FIG. 8. The data from Figs. 6 and 7 are combined.
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< /x> averaged over akt andy. Therefore, the correlation function
N, o is given by

C(AX,Ay,t+At)=(n(x+Ax,y+Ay,t+At)n(x,y,t)),
5

1+

09r

08t wheren(x,y,t) =1 if the pore body afx, y) was invaded at
timet, and zero otherwise. To study changes in the character

071 of the flow as the fluid advancéise., as a function of tim®,

05l | it is essential to maintain thiedependence, unlike the IPWT
model correlations studied in Ref¢t0—42 where one aver-

05 e ‘ ages over this time dependence. In watching the time-

1 10 t dependent simulation of the invasion, the role of avalanches

in the IPWT model is clear. During one avalanche, the fluid
advance occurs in the localized region of that avalanche;
then, the fluid advance occurs in the region of the next ava-
lanche (spatially separated from the previous gnand so
forth. Therefore, forAt less than the lifetime of an ava-
Although the large-time flows for our small systems havel2che, the correlation function is short range because the
not achieved the linear-flow regime, it is clear that they arecorrelated sites are usually within one avalanche. With in-
reased capillary number, this avalanche-to-avalanche struc-

tending towards that behavior. Furthermore, the negativ . :
slopes in the crossover regime in Fig. 10 cannot be sustainq%re breaks down. First, one sees two spatially separated ava-

and only represent a temporary filling-in of the smatie- anches occurring simultaneously, and eventually fluid flow

gions of the porous medium. Therefore, we have clear evie distributed uniformly over the width of the porous me-

dence for the crossover or transition from early-time IPWT:glrJ“THeZh'; rter:nggevr(zirs?rrigi?gge{:ﬁon:rmdegveer;dfhné %3;h
model fractal flow to late-stage linear flow beginning at a y

characteristic time that varies inversely with the capilIarygﬁgggsgzr';zilgi'guﬁgf t?fﬁg fslg\lljvgre fluctuations of the corre-

FIG. 9. (x(t)/x;p) vst for a single capillary number but a variety
of widths [sizes 3x 90 (O), 30X 135 (J), 30X 180 (+), 30X 225
(A), and 30<270 X)]. This indicates that the apparent size depen-
dence in Fig. 8 is random.

number.
Ay—(Ay))?
IV. TIME-DEPENDENT CORRELATIONS <( Y < y>) >t
The space-time correlations studied in this section are the = E E (Ay—(Ay))?C(Ax,Ay,t,At).
contributions from all pairs of invaded pore bodies spatially AL=Atmax AxAy
separated byAx in the average flow direction and hyy (6)

perpendicular to the average flow direction and &y in

time. That is, the first pore body in the pair located»ty) = To improve statistics, we have also summed over a short
was occupied at timé, while the second pore body ax (  At<At,,,. This value ofAt,,,,was chosen to be small com-
+AXx,y+Ay) was occupied at timeé+ At. These pairs are pared to the time scale of the flow and is much less than the
lifetime of the larger avalancheg(,,., represents 100 time
steps for our 19 pore-body systems and 20 time steps for
our 2700 pore-body systemdOf course, averaging over a
large systemAy is just as likely to be positive as negative so
that (Ay)~0. For the IPWT model the perpendicular fluc-
tuations, Eq(6), are consistent with the avalanche structure,
see Fig. 11. For small times=0, when the avalanches are
close to the inlet where they tend to be smaller, one has
short-time correlations Xt<<At,,,) spread over the entire
width of the porous medium; as the injected fluid moves

n

P

c

N

o/t = <ix /i /2P

W further into the porous medium with advancing time, the
0.9+ 1 avalanches become large$2] and the short-time correla-
08 M tions (At<At,,,) become more localized signaled by a de-

crease in these perpendicular fluctuations. Of course, if one
0-71 : — ‘1‘0 ‘ N sums over all values oAt, these total fluctuations extend

over the full width of the porous medium, Fig. 11.

FIG. 10. The average position of the injected fluid divided by ~ Figure 12 shows the perpendicular fluctuatigisy. (6)]
time, (x)/t for a variety of capillary numbergN,=5.3x 10" ® (i), for our 30x 90 systems for the IPWT model, as well as for a
N.=8.8<x10°° (@), N,=1.33x107° (+), N,=2.65x107° (0J), variety of capillary numbers. For these small systems, the
N,=5.3x10"°% (O), N;=1.06X10" % (>), N,=2.12X10"* (), results for the IPWT model exhibit the same decrease seen in
N,=8.8<10 % (M), N;=3.5X1072 (X)]. Fig. 10, signaling the localization of the short-time correla-
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FIG. 11. The perpendicular fluctuatiohgq. (6)] vs time. The FIG. 13. (AX), fr : .
o ) _ . . 13. . from Eq. (7) (solid gray ling, the average sepa-
heavy solid line shows the short-tifi&t<Aty,=0.04 (100 time i1 of correlated pore bodies parallel to the flow, for the large
steps] perpendicular fluctuations, which decrease with time as the§400>< 2500) IPWT model systems. The dashed black line shows

large avalanches begin. to dominate, so that shor.t times imply sho he best power-law fit to the data (3t819. Note that the exponent
range correlations within one avalanche. The thinmearly hori- i 1o same as was used in fitting the average position of the in-

zonta) solid line shows that the long-timg.e., averaged over all iected fluid
values ofAt) perpendicular fluctuations are spread over the entiré '

orous medium. . . .
P between correlated pore bodies for the large invasion perco-

tions because of the large, well-defined avalanches for larggtion (the IPWT model systems. As should be expected, the
times. As the capillary number increases, the correlations iniP€St Power-law fit to these data predicts the same power law
tially follow the IPWT model behavior and then break away & Was found for the average position of the injected fluid in
to eventual constant time dependence. When one observe§¢: Il A. Again the data are sufficiently noisy, so they in-
the invasion visually, for smalbut nonzerp capillary num- d!cate only a slight preference for the.value of fracta! dimen-
ber, one sees invasion in two separate regioms simulta-  SIonDy=1.89 overD;=1.82; and again, we emphasize that
neous avalanchesAs capillary number continues to in- the main point of our work is not the value of fractal dimen-

crease, the avalanche structure disappears and the invasio" for the IPWT model, but rather the crossover from frac-
occurs randomly over the whole width of the porous me-tal the IPWT model behavior to linear behavior at a charac-

dium. teristic time that decreases as the capillary number increases,
Figure 13 shows the average distance parallel to the flow?S IS clearly shown in Figs. 3-12. _ _ _
Consistent with the crossover seen in previous figures,
Fig. 14 shows/Ax), from Eg. (7) for a variety of capillary

<Ax>t:alem sziy (AX)C(Ax,Ay,t,At), (7) " numbers. Although these data are much noisier than the data
<(Ay-<Ay>)2> <Bx/BX>

3000 rmpmr— ] 157

2500 |

2000 [

1500 b 0] ﬁ
0
t t

FIG. 12. The short-timgAt<At,,=0.22(20 time stepH per- FIG. 14. The mean separatigiAx(t)) (averaged over allt)
pendicular fluctuations for our 3090 systems for the IPWT model parallel to the flow for our 38 90 systems for a variety of capillary
[N.=0.0 (¢)], as well as for a variety of capillary numberil, numbers [N,=5.3x10"% (#), N,=1.33x10"° (+), N.=2.65
=5.3x10"% (@), N,=1.33x107° (+), N,=2.65x107° (0), N,  X10°° (0), N;=5.3x10°° (O), N.=1.06<10"* (>>), and N,
=5.3x107° (0), N;=1.06X 10" % (>), andN,=2.12x 10 * (4)].  =2.12x10* (4)].
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plotted in Figs. 4—10, there is still a clear tendency for the 2.0
small-capillary-number data to mimic the IPWT model be-
. . . . . A
havior (the horizontal ling while the larger-capillary-number &
data are consistent with the previously observed crossover ™ -
from the IPWT model at early times to a behavior consistent
with the linear flow(a straight line with a small negative
slope(x)/t}13xt =913 at later times. 0; ki 7
0.8
V. CONCLUSIONS 07 |
We have developed a pore-level model of immiscible 06 1
drainage with the following propertiesi) all pore throats 0.5 ‘ o e
and pore bodies have finite volumes that can be occupied by 0.01 0.1 25
either fluid, (ii) local flow is dictated only by the local pres- t/{in(1/N )}

sure differencesiii) complications are treated as physically

as possib]e(iv) the flow rules accurate|y account for all of FIG. 15. The heuristic fitsolid line) of the function in Eq.(lO)

the nonwetting fluid injected into the porous mediui,the  to the data(x) in Fig. 6.

model has been validate@e., provides quantitatively cor-

rect results in the limits of zero-capillary number and of of the first moment and the related power-law behavior of the

zero viscosity ratid29]. saturation and fractional flow profiles lead to definite predic-
For viscosity matchingviscosity ratioM =1) with finite  tions for these profiles in the linear-flow regimé., post-

capillary number, the early-time flows mimic those of the crossover[13]. Because of the corresponding relationships

invasion percolation with trapping model. At a characteristicbetween the moment and the profiles for the present case

time, these flows break away from the IPWT model fractal[42] and the corresponding role of the characteristic cross-

behavior and approach line@Buckley-Leverett or “stable} ~ over time[Eq. (3)], one is led to the corresponding behavior

flows. The larger the capillary number the sooner this breakfor these profiles in the post-crossover regimes £):

away occurs, i.e., the smaller the characteristic time. This

crossover from the IPWT model to compact flow and the S(x,t,No) =1%o (7 ®x/t) (8)

associated fractal scaling are qualitatively similar to experi-

mental results for the interfacial width in much larger sys-5q

tems[30]. In this work, we relied on the time dependence of

the first momentlaverage positionof the injected fluid as

well as on the time dependence of the parallel and perpen-

dicular correlations because these characteristics of the flow

depended upon the time from initial injection to break-Whereo and ¢ are monotonic functions.

through, which was necessary to probe the crossover behav- These pl’ediC'[ionS were SUCCGSSfu”y tested in the pl‘eViOUS

ior that we found. We found that our systems were too smalfase[13]. To test these predictions for the present case it is

to provide reliable results from box counting. important to have an estimate of when the flows will exhibit
The seminal paper of Lenormand, Toubouly and Zarconénear behavior for different Capillary numbers. Towards this

[6] demonstrated in what regimes of the Viscosity_raﬁolend, we have attempted a heuristic fit of the data in F|g 6, in

Capi”ary_number p|ane the different flow behavimsmpact the hOpe that such a fit will pI‘OVide a plausible estimate of

ﬂOW, viscous fingering, and Capi”ary ﬁngermgominated_ when the flows will become linear. As is shown in F|g 15,

Our results suggest that along the line of unit viscosity ratighis heuristic fit of the data worked credibly for the function

large flows only exhibit capillary fingering in the limit of

zero-capillary number. That is, solely for zero-capillary num- < XN

F(S\No)=¢(7°9), €)

ber, is there no crossover. For any nonzero capillary number,

although the flows will initially exhibit capillary fingering,

for large enough flows they will eventually become compact.
The data presented in Sec. lll indicate that the charactewhere the best fit gava=0.0005-0.0002 andb=91=*3.

istic crossover time depends simply upon the capillary numThis function has the correct forms in the smaknd larged

ber, see Eq(3). For zero-capillary number, a similar cross- regimes, and it approximates the data reasonably well in the

over was observed for viscous fingering in porous mediagrossover regime. Consequently, we hope that it provides a

where the flows initially mimicked DLA fractal behavior reasonable estimate of the times at which particular

[43,11-14. At a characteristic time, these flows break awaycapillary-number flows become linear.

from the DLA fractal behavior and approach linear In future work, we plan to check the predictions in Egs.

(Buckley-Leverett or stabjeflows. The larger the viscosity (8) and(9) guided by the predictions from Fig. 16 that the

of the injected fluid the sooner this breakaway occurs, i.e.flows become linear whet=[In(1/N.)]>°. We also plan to

the smaller the characteristic time. In an earlier paper reportnvestigate the changes in the crossover when the viscosities

ing this work, we demonstrated that the power-law behavioof the two fluids are not equal.

c > :{|n(e+aebu0-7)}—o.13/o.7’ (10)
XipwT/
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FIG. 16. The behavior of the fitting functiotsolid line) ex-
tended into the regime around=1 where the flow becomes linear. @

M.F. and G.B. gratefully acknowledge the support of the ) ) ) o
U.S. Department of Energy, Office of Fossil Energy. This FIG. 17. A portion of the two-dimensional porous medium is

work was financially supported by National Energy TechnoI-Shown' The pore bodies, labeled by two even integers, occupy the
ogy Laboratory. sites of a diamond lattice. Adjacent pore bodies are connected by

pore throats, labeled, as shown, by one even and one odd integer. In
this figure, flow is directed upwards, with the inlet being the bottom
APPENDIX: DETAILED DESCRIPTION OF THE MODEL row of throats, and the outlet being the tOp. The diamond lattice
structure assures that all throats are geometrically equivalent with

Our model is a generic pore-level model of the type thatregards to the average flow, in that the throats are not either parallel
has been widely used for the past two decafs8,11—- or perpendicular to the average flow as they would be for a square
14,16-18,21,23,24,31-B6Although our model has many lattice array.
features in common with these other pore-level models in the
literature, we choose to describe the model in some detail sdepends on the viscosity ratio.
that the reader can understand how our model compares to In this section, we describe our model briefly; a more
the others. A fully detailed description in the model is in- complete description was presented in a recent pEsir
cluded in an earlier pap¢g9].

Our model is intended to incorporate, as realistically as
possible, both the capillary pressure that tends to block the
invasion of narrow throats and the viscous pressure drop in a When the invading fluid first enters one of the pore
flowing fluid. The two-dimensional porous medium was throats, the radius of curvatuReof the meniscus is fixed by
modeled as a diamond lattice with a length sdaléFig. 17.  contact angled and the radius of the pore throat R
It consists of spherical pore bodies of volumé®  =r/cosé. Therefore, the pressure drop across the meniscus
[(47/3)r3=¢3] at the lattice sites; connecting these poreis the capillary pressure
bodies are cylindrical throats which are of lengttand have
a randomly chosen cross-sectional area between 0¢3and Peaf R)= 20 C0s§ (A1)
(mR?=0—¢?), i.e., there is equal probability for any area o ro’
between 0 and?. Compared to several models reported in
the recent literature, we believe that our model should bevhere o is the surface tension. Thus, the flow velocity is
both more general and more flexible, in part because both thgiven by the throat conductance times the total pressure drop
throats and the pore bodies have finite volume in comparisoacross the throat, see Fig. 18,
with (i) Refs.[6], [7], [31], where the throats contain zero
volume of fluid, and(ii) Refs.[32—35, where the pore bod- 9= Girwoal Prw— Pu— Peap)- (A2)
ies have zero volume. Furthermore, in our model, the vol-
umes of b.Oth the pore bodies and 'thrpats can be set as d ' the model, the transmissibiliticonductanceof the throat
sired. In this sense the work of Pereira is closer to our modeIS given by Poiseuille’s law,
but the latter work focuses on a model of three-phase flows '
at constant pressuf&6]. Of course all of these models in- ) .
clude the essential features of random capillary pressures that - (Athroal )
block the narrowest throats and a random conductivity that Yinroat=9 x+(1—=x)M"’

N
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wetting

non-wetting fluid

fluid

Pas P,

FIG. 18. A sketch showing the advance of the nonwetting fluid
within a throat where the pressure drop exceeds the capillary pres-
sure, as given in EqgA1)—(A3).

where Ajoat IS the cross-sectional area of the thrgen-
domly chosen from a uniform distributipnx is the fraction
of the throat of lengtif which is filled with defending fluid,
andM is the ratio of the nonwetting, invading fluid’s viscos-
ity to that of the wetting, defending fluidM = u,/up . The . . . .
quantity g* carries all the dimensionality 08uoa 9* FIG. 19 Th_e fluid occupations near tliie j) pore giving the
= ¢3/(8mup). Many of our results for the flow velocity are 110W velocities in Eq.(A5).

presented in terms @f* =qg/g*, which is independent of the

particular value of the viscosity of the wetting fluid. From Aj+1=0ij+1(Pij=Pisz 27 Peapij+1),
Eq. (A2), the nonwetting fluid advances if the pressure dif-

ference between the pore filled with nonwetting fluid and the Qi-1j=9i-1j(Pi,j = Pi-2; = Peapi-1),
pore filled with wetting fluid exceeds the capillary pressure.

Otherwise the nonwetting fluid will retreat. Qi+1,j=9i+1,(Pij=Pit2;=Peapit1,)-

To avoid problems with the abrupt change in capillary . .
pressure at the inlet of a throat, we have adopted the solutigy@auiring that the net flow out of the pore bodyj) be zero
used in Refs[32—35. Consistent with this work, we assume 1€2ds to the following equation fd#; ; :
that the capillary pressure increases from zero at the inlet to

a throat of radiug and length¢ to the value in Eq(Al) at (Gi-2j-1FGij+1+ -1 Gi+1)Pi;
the center of the throat. This dependence is given by the =(Gi-2j-1Pi-2j-2F9ij+1Pi+2 12+ 0i-1Pi-2;
equation
+0i+1,iPi+2,) +(9ij+1Pcapj,j+ 11 9i—1,jPcapj—1j
20 cosé
Pcap:%Sin(ﬂ-X)y (A4) +0i+1,jPeapj+1,)- (A5Db)

Equation(A5b) is of the general form

wherex is still the fractional distance along the throat from 0

to 1. Use of Eq.(A4) solves the programming problems (2 g)pi 12(2 gP
caused by the abrupt change in capillary pressure at a throat’s ’

inlet because the inlet of a throat will never be blocked since .

it has a zero-capillary pressure. If blocking occurs, it will whgre(l) the Sums are over the conqected t.hroats r_:md pore
occur in the throat where the capillary pressure equals thBodies shown in Fig. 19ii) the factorf is zero if there is no

droo. Th i K att ted to iusti meniscus in the throatiji ) the factorf is +1 if the pore body
pressure drop. The earlier work attempted to justify @) i, j) is filled with nonwetting fluid and the connecting pore

hysically, by arguing that real throats would h dugfl: 1) 18 filled wit vetting flu nnecti
pnysicarly, by arguing that rea throats would have a gra ufﬂuéady is filled with wetting fluid(iv) the factorf is —1 if the

decrease in cross-sectional area accompanied by a grad L . N X .
increase in capillary pressure; however, the throat volumeB0re PodY, j) is filled with wetting fluid and the connecting
’ ’ pore body is filled with nonwetting fluid. Implicit in this

occupied by the fluids were volumes of uniform cylinders®' o : s
[32-39. discussion is the assumption that the pressure within a pore

body is uniform. Assuming otherwise would require doing
o ' full fluid dynamics using the Navier-Stokes equations. This
2. Finding the pressure field is inconsistent with the pore-level model approach and, given

Volume conservation of the incompressible fluid dictatesfinite computer resources, this would severely limit the size
that the net volume flovg out of any pore body must be ©f the model porous medium. While E(A4), etc., are ide-

zero. Let us consider app"cation of the above rules to th@lizations of the real miCI’OSCOpiC behaViOI’, the model incor-
situations in Fig. 19. In Fig. 19, the flow velocities directed POrates the realistic characteristics of a random distribution

+

> fg Pcap), (AB)

out of the(i, j) pore body through the throats are of conductances and correlated capillary pressures. Signifi-
cantly, the model has the correct dependenfiess. (Al)—
Qi—2j-1=9i-2,j-1(Pij=Pi_2j-2), (A58  (A3)] upon throat radius for the flow velocity and for the
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capillary pressure that must be overcome for the nonwetting 8 L P
fluid to pass through the throat.

Once the location of the interface has been determined
the numerical value of the capillary pressure in each throat is
known. The program then iterates E@\6), updating the
pressure field until convergence is achieved with a residual
less than some small value, that is, until @)

wetting non-wetting wetting

fluid fluid fluid
Kf through
in the pore throat (b) o pore throat

into the pore body

_ 2 FIG. 20. The flow rules allow the interface to advarigewithin
= - <
R=2 (Pnew~Paig)’<e, (A7) a throat(left figure) as well ag(b) through a throat into the adjacent

. ) pore body(right figure).
wheree is chosen to be small, e.g:=10"2 (dyn/cn?)? It _ . )
should be noted that, for the cases being considered, we hat@invaded by wetting fluid due to backflowWVe found that -
used a value of surface tension, such thatcpsg/¢  the time intervalAt had to be chosen with care. Of course, if
—10000 dyn/cri. Therefore, the smallest pressure drop thathe interval is too small, the computer program will be un-
will advance the nonwetting fluid through a throat is 17 7oonecessarily inefficient. However, if the interval is too large,

dyn/cn?, so that our value of the residual represents a fracSPurious oscillations occur in the fluid flow about the true

tional pressure change of less tharr 10n our 2700 pore- equilibrium. Having determined the interface and chosen the
body systems. This value of was chosen to minimize run tMe Step, we have attempted to make the flow rules as un-

time without jeopardizing mass conservation. restrictive as possible. ) o
Flow can increase the amount of nonwetting fluid within

the pore throafFig. 20@)], or the amount passing through
the pore throat into the pore bod¥ig. 2Qb)]. Similarly,
Once the pressure field has been determined, the interfadmckflow can cause the interface to retreat within the pore
can be advanced through a time interxal A throat is con-  throat, or through the pore throat into the pore body. Consis-
sidered to be on the interface if the pore body at one entent with Refs.[32-35, the flow rules assume that the
contains some wetting fluidit may be filled with wetting throats are cylindrical with cross sectignand lengtht.
fluid) and if the pore body at the other end is fully invaded In summary, we have attempted to make the flow rules as
by nonwetting fluid(or was fully invaded and is not yet fully nonrestrictive and reliable as possible.
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