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Pore-level modeling of drainage: Crossover from invasion percolation fingering to compact flow
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A pore-level model of drainage, which has been quantitatively validated, is used to study the effect of
increased injection rate~i.e., increased capillary number! upon the flow, with matched-viscosity fluids. For
small enough capillary number, the flows from the model correctly reproduce the flows from the invasion
percolation with trapping~IPWT! model. As the capillary number is increased, the early-time flows mimic
those of the IPWT-model, but then deviate towards compact flow at a characteristic time that decreases as the
capillary number increases. That is, the larger the capillary number, the sooner the flow crosses over from
IPWT flows towards compact~linear! flows.
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I. INTRODUCTION

Flow through porous media is a subject of scientific a
engineering interest for a number of reasons, e.g., enha
oil recovery, DNAPL remediation, and geologic CO2 seques-
tration. For half a century, flow in porous media has be
treated as a compact~i.e., Euclidean! process whereby the
interface advances linearly with the total amount of injec
fluid. This assumed behavior is predicted by a Darcy’s l
treatment, which uses saturation-dependent relative pe
abilities, such as those of Buckley-Leverett or Koval@1–5#.
For the past two decades, it has been appreciated that flo
porous media is fractal in certain well-defined limits@6–15#.
In the limit of zero viscosity ratio,M5m I /mD50 ~i.e., ratio
of the viscosity of the injected fluid to that of the displac
fluid!, the flow is known to be modeled by self-simila
diffusion-limited-aggregation~DLA ! fractals @6–10,15–20#.
Here, the injected fluid has zero viscosity and the displa
fluid has finite viscosity. In the limit of zero-capillary num
ber, where the injection velocity is infinitesimal,V50 ~i.e.,
quasistatic injection!, the flow is known to be modeled b
self-similar, invasion percolation fractals@21,15#. The defini-
tion of the capillary number is

Nc5mDV/s cosu, ~1!

i.e., the ratio of the viscous drag forces~viscosity of the
displaced fluid times average fluid velocity,mDV) to the cap-
illary forces ~proportional to interfacial tensions times co-
sine of the contact angleu!. The invasion percolation mode
has been widely investigated both to determine its fun
mental properties and to determine its predictions for pra
cal problems@8,15,21–27#.

In a series of papers, we studied unstable~viscosity ratio
M,1), miscible ~zero surface tension! injection using a
1063-651X/2003/67~5!/051601~12!/$20.00 67 0516
d
ed

n

d

e-

in

d

-
i-

pore-level model similar to that of Chen and Wilkinson@18#,
Lenormand@6#, and Blunt and King@7#. That is, we per-
formed pore-level modeling of the injection of a less visco
fluid into a model porous medium saturated with a mo
viscous fluid, with viscosity ratioM5m I /mD,1, and zero
surface tension. We found that initially the fluid injectio
was described by DLA fractals; but as the fluid advanced,
injection became compact on a time scale related to the
verse of the viscosity ratio, 1/M . Hence, the smaller the vis
cosity ratio, the longer it took for the flow behavior to ‘‘cros
over’’ from fractal to compact behavior, so that the on
flows that remained fractal were those in the zero viscos
ratio limit @11–14,28#. This crossover was observed in bo
two- and three-dimensional flows@11,14#; the crossover af-
fected both the saturation of injected fluid and the interfac
width @12,13#. The behavior of this crossover enabled us
characterize the dependencies of saturation and fracti
flow upon the viscosity ratio, in the long-time, compact lim
~Buckley-Leverett flow! to which the assumptions of stan
dard Darcy’s law flow apply.

Recently, we have modified our earlier code to include
effect of capillary forces to study drainage, where a nonw
ting fluid displaces a wetting fluid@29#. In this paper, we
focus on the role of capillary forces, which needs to be u
derstood before we undertake the more complicated stud
the simultaneous effect of both viscous and capillary forc
Given this focus, we fixed the viscosity ratio at the val
unity ~viscosity matching! so that the two fluids have identi
cal behavior except for the role of capillary forces. At suf
ciently low capillary numbers, we have demonstrated t
our model correctly reproduces the zero-capillary number
sults from the invasion percolation with trapping~IPWT!
model@29#. Having validated our model in the limit of sma
capillary number, where the flow exhibits fractal fingerin
we study the effect of increased capillary number on
flow.
©2003 The American Physical Society01-1
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Section II briefly discusses salient features of our po
level model of immiscible drainage; a more detailed desc
tion is presented in the Appendix. Sections III and IV pres
results for a variety of capillary numbers, which show th
initially the flows are fractal, mimicking those of the IPW
model but that these flows become compact~linear or stable!
after a characteristic time varying inversely with the capilla
number. Section III presents results for the first moment
the injected fluid, which tracks the average position of
injected fluid as it invades the model porous medium
several system sizes. Initially, these results for the time
pendence of the average position of the injected fluid
identical to results for the average position of the injec
fluid from the IPWT model for the same model porous m
dium; however, at a characteristic time, the motion of
injected fluid deviates from the fractal IPWT model behav
and approaches a linear~constant speed! time-dependent ad
vance of the fluid. This characteristic time is observed
decrease with increasing capillary number. Section IV p
sents results for the growth of correlations both parallel a
perpendicular to the flow. Consistent with the behavior of
average position of the injected fluid, the correlations i
tially mimic the IPWT model behavior but then break aw
at a characteristic time approaching the behavior expe
from linear flow. These results, showing crossover from
IPWT model flow to compact flow in the average position
the injected fluid, are qualitatively similar to experimen
results for the width of the interface@30#. However, to our
knowledge, this is the first quantitative observation and ch
acterization of the crossover from demonstrably IPW
model flow at early times towards compact flow at la
times.

II. FEATURES OF THE PORE-LEVEL MODEL

Our model is a generic pore-level model of the type t
has been widely used for the past two decades@6–18,11–
14,16–18,21,23,24,31–36#. Although our model has man
features in common with these other pore-level models in
literature, we choose to describe the model in some deta
the Appendix so that the reader can understand how
model compares to the others.

Salient features of our pore-level model include the f
lowing.

~i! Our model is intended to incorporate, as realistically
possible, both the capillary pressure that tends to block
invasion of narrow throats and the viscous pressure drop
flowing fluid.

~ii ! The diamond lattice structure assures that all thro
are geometrically equivalent with regards to the aver
flow, in that the throats are not either parallel or perpendi
lar to the average flow as they would be for a square lat
array.

~iii ! All elements of the porous medium~pore throats and
pore bodies! have volumes that can be occupied by eith
fluid.

~iv! We have tried to make the flow rules as nonrestrict
as possible in that~a! locally, back flow as well as forward
flow are allowed, as ordained by the local pressure dif
05160
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ences, and~b! complications, such as overfilled pore bodi
or plugs of fluid trapped in the pore throats, are treated
physically as possible@29#.

~v! Most importantly, these flow rules accurately accou
for all of the nonwetting fluid injected into the porous m
dium, from initiation through breakthrough over thousan
of time steps. For the smallest capillary number, there i
0.25% difference between the~a! total volume of nonwetting
fluid injected into the medium and~b! the total volume of
nonwetting fluid occupying the medium as determined by
flow rules. For the largest capillary number, this difference
less than 0.01%.

~vii ! Our model has been quantitatively validated in t
very different limits of zero-capillary number~agreement
with the IPWT model! and zero viscosity ratio~agreement
with DLA ! @29#.

III. RESULTS—CROSSOVER IN THE AVERAGE
POSITION OF THE INJECTED FLUID, Šx„t…‹

In this section, we study the flow as it deviates from t
IPWT model as capillary number increases. Figure 1 co
pares the near-breakthrough flow patterns for the IPW
model @Fig. 1 ~upper left!# with the near-breakthrough pa
terns for the model with increasing capillary number. For t
smallest capillary number shown,Nc52.731025, one sees
some additions to the IPWT model pattern, especially in
left-hand third of the figure. As the capillary number is i
creased, the patterns deviate more and more strongly f
the IPWT model.

Because of the engineering interest in maximizing
amount of injected fluid~enhanced oil recovery and carbo
dioxide sequestration!, it is important to understand how th
injected fluid occupies the medium. For this reason,
study has investigated the average position,^x&, of the in-
jected fluid as a function of the total amount of injected flu
Since we found, as will be seen, that the IPWT model r
resented the baseline behavior, it is useful to first study
time dependence of̂x(t)& for the IPWT model@29#. All
distances are in units of the distance between rows of
diamond lattice~Fig. 17!, which we have chosen to be unit
All volumes are in units of the volume of a pore body, whic
we have chosen to be unity.

Our investigation determines the average position^x& of
the injected fluid as a function of the injected volumeV or
massm or time. Since our program maintains a consta
volume flowq to within a fraction of a percent, the volume
directly proportional to the time,V5q t, as is the mass o
our incompressible fluids. An additional advantage of de
mining the time dependence of^x(t)& is its simple relation-
ship to fractal dimension for fractal flows like those from th
IPWT model. Since the mass of a fractal,m, is related to the
linear dimension̂ x&, t}m5A^x&D f21, then ^x(t)& is given
by

^x~ t !&5Bt1/~D f21!5Bt11«, ~2!

which defines the exponent«.
1-2
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PORE-LEVEL MODELING OF DRAINAGE: CROSSOVER . . . PHYSICAL REVIEW E 67, 051601 ~2003!
FIG. 1. Comparison of the near-breakthrough IPWT model pattern~upper left! with the near-breakthrough patterns for three capilla
numbers (Nc52.731025, 5.431025, and 21.631025) using the same realization of a 60345 model porous medium. The period
boundary conditions cause the finger growing at the upper right of the IPWT model pattern to extend into the upper left-hand sid
pattern.
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A. Results—Limit of the IPWT model

Figure 2 shows data from a variety of IPWT simulatio
from systems with the size of our flow-model simulatio
(30390 up to 303270 with a few thousand pore bodies! to
much larger systems (40032500 with 106 pore bodies!. Our
definition of ‘‘time,’’ t5(m/w)10.91, has the following ad
vantages.

~i! We use the massm ~equivalently the volume, both
proportional to the physical time!, which will enable us to
compare the fractal character from computer experime
with different flow velocities and capillary numbers.

~ii ! The time therefore, has the same dimensions as
ume, i.e., the unit volume of a pore body.

~iii ! Given our uniform injection along the width of th
model, we divide the mass by the number of pore bod
along the widthw so that the time is unaffected by the wid
of different size models even though the mass would be p
portional to the width.

~iv! The additive constant of 0.91 makes the power law
Eq. ~2! applicable over the greatest range~to the smallest
times! and arises from the discrete vs, continuous argume
of our earlier miscible flow work@37#.

~v! the exponent 11«51.13 represents the best fit to th
data biasing the data from the large systems more hea
than the data from the small systems.
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This value of the exponent 11«51.13 is consistent with
the fractal dimensionD f5111/(11«)51.89, from perco-
lation theory@39#. This value of fractal dimension is some
what larger than that found in other studies of the IPW
model,D f51.82 @9,10,15#. However, given the noise in ou
data, the different lattice structure and the different meth
for determining fractal dimension, differences of 4% may n
be surprising. These data are sufficiently noisy that th
demonstrate only a slight preference forD f51.89 over the
valueD f51.82, which resulted from box counting on larg
systems@39,15#.

We have focused on ‘‘short, wide’’ systems because ex
rience has shown that flows in long narrow systems~even in
square systems! coarsen from many growing fractal finge
to one growing finger. This causes significant deviatio
from fractal power laws. Also, the wider the system, the le
important size effects should be.

B. Results from the flow model with finite capillary number

Most of the results from the flow model are from system
either 30390 or 303135 pore bodies. Because invasion p
colation is such a noisy process, it proved difficult to stu
the change from invasion percolation to more pistonl
flow. To show the effect of the noise and how the chan
away from the IPWT model occurs, Figs. 3~a!–3~d! compare
1-3
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FERER, BROMHAL, AND SMITH PHYSICAL REVIEW E67, 051601 ~2003!
results for invasion percolation~dashed line! with the corre-
sponding results from our model~solid line! for two capillary
numbers for the quantitŷx&/(0.445t1.13). The results from
the model begin by following the invasion percolation resu
quite closely but then deviate at a later time, which decrea
as the capillary number increases.

To best characterize the deviations from the IPWT mo
results for each of the five realizations, we determined
ratio xNc

(t)/xIP(t) until there were significant, sustained d
viations from unity; from that point on we used the rat
xNc

(t)/xIP,ave(t), wherexIP,ave(t)50.445t1.13. These determi-
nations of the ratios were then averaged over the five r
izations for each capillary number. These results are p
sented in Fig. 4 for the systems that are 30390 and in Fig. 5
for the systems that are 303135. From these figures, it i
clear that initially the flows mimic the IPWT model but the
deviate at a later, characteristic time; it is also clear that
larger-capillary-number flows begin to deviate at earl
times.

To estimate the dependence of the characteristic t
upon capillary number, we have attempted to collapse al
the data onto one curve~see Figs. 6–8!. The form of the
characteristic time which most effectively accomplishes t
collapse is

t~Nc!'0.02$ ln~1/Nc!%
2.5 ~3!

where our crude estimate of the uncertainty in the expon
is 2.560.5, in that 2.0 is too weak a dependence and 3.

FIG. 2. The fractal scaling of̂x(t)& from the IPWT model on a
variety of systems sizes averaging over a variety of number
realizations~samples! @38#. Specifically this figure shows the dat
from systems of size 40032500 from averaging over nine realiza
tions ~h!, systems of size 18031080 @from averaging over 30 re
alizations~L! and over five realizations~l!#, systems of size 90
3540 @from averaging over 20 realizations~s! and over only five
of the realizations~d!#, systems of size 303135 from averaging
over 20 realizations~.!, systems of size 30390 @from averaging
over 20 realizations~1!, over seven selected realizations~3!, and
over the five realizations used for the flow model~,!#. All distances
are in terms of the unit distance between rows of the diam
lattice; all times and volumes are in terms of the unit volume
each pore body.
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too strong a dependence. Clearly, this form for the charac
istic time provides a credible collapse of the data so that

^x~ t !&50.445t1.13F~ t/t!, ~4!

To ascertain the significance of size effects, we have co
bined the data from Figs. 6 and 7 in Fig. 8. It is tempting

of

d
f

FIG. 3. ~a!–~d! Comparisons of flow-model results~solid lines!
for two capillary numbers (Nc52.6531025 in the top figures and
Nc55.331025 in the bottom figures! with results from the IPWT
model~dashed lines! for the typical realizations number 1~left-hand
figures! and number 2~right-hand figures! of the five total realiza-
tions. Note that the dashed-line curves~the IPWT model! are the
same in both figures for realization number 1~also in both figures
for realization number 2!. All distances are in terms of the un
distance between rows of the diamond lattice; all times and volu
are in terms of the unit volume of each pore body.

FIG. 4. Data from averagingxNc
(t)/xIP(t) over five realizations

for the 30390 systems for a variety of capillary numbersNc55.3
31026 ~�!, Nc58.831026 ~d!, Nc51.3331025 ~1!, Nc52.65
31025 ~h!, Nc55.331025 ~s!, Nc51.0631024 ~x!, Nc52.12
31024 ~-!, Nc58.831024 ~j!. Note: at smallt, the value is
'1.0060.05, so that the noise is reduced from the case in Fig
where the values are'1.060.3. Figure 2 shows that simply ave
aging over several realizations does not significantly reduce
noise, especially for these small, near-IPWT model systems.
1-4
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PORE-LEVEL MODELING OF DRAINAGE: CROSSOVER . . . PHYSICAL REVIEW E 67, 051601 ~2003!
assume that Fig. 8 shows a size dependence in the data,
the crossover for the wider systems occurs slightly later t
that for the 30390 systems. However, further investigatio
shows that this apparent size dependence is random, li
related to the noise in these small, near-IPWT model s
tems. Demonstrating the lack of a systematic size dep
dence, Fig. 9 shows the same plot for several system
different width with the same capillary number. The cros
over does not occur at exactly the same characteristic
for all systems; but the variations appear random rather t
systematic, and these variations are of a size that is con
tent with other noise observed in these small, near-IP
model systems. This also shows that edge effects do not
nificantly affect our results.

The evidence presented shows that initial flows are
IPWT model fractals but that the flows deviate from th
fractal behavior at a characteristic time that decreases as
moves away from the IPWT model limit~i.e., as the capillary
number increases!. We have estimated the dependence of
characteristic crossover time in Eq.~3! and in Figs. 6–8. It is

FIG. 5. Data from averagingxNc
(t)/xIP(t) over five realizations

for the 303135 systems.Nc51.3331025 ~1!, Nc52.6531025

~h!, Nc55.331025 ~s!, Nc52.1231024 ~-!, Nc58.831024

~j!.

FIG. 6. The collapse of the data from Fig. 4 using the char
teristic time in Eq.~3! for capillary numbers@Nc55.331026 ~�!,
Nc58.831026 ~d!, Nc51.3331025 ~1!, Nc52.6531025 ~h!,
Nc55.331025 ~s!, Nc51.0631024 ~x!, Nc52.1231024 ~c!,
Nc58.831024].
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natural to assume that the flows are becoming linear in
the interface~or average position of the injected fluid! ad-
vances linearly with time. However, Fig. 10 shows that,
breakthrough, our flows in these small systems have not
achieved linearity. This figure also shows that the crosso
does not occur at one point but over a temporal region
finite width.

In Fig. 10, we normalized the ratiôxNc
/xIP& used in the

previous figures by the appropriate time factor so that lin
~stable! flow at long times would be a horizontal line~i.e.,
with zero slope! on the graph. Note that the small-capillar
number fractal regime is increasing with a slope 0.13; ho
ever, the large-capillary-number regime has not reached c
stancy at breakthrough~the latest times shown!. The negative
slope of the late-time, large-capillary-number plots sho
that the flow is occupying the small-x regimes of the porous
medium; obviously, this negative slope cannot be maintai
indefinitely because eventually the whole porous medi
would be filled and the interface would have to advance
early with the amount of fluid injected. Since our simulatio
have not achieved linear flow at the latest time accessibl
these simulated flows, we will call these intermediate
prelinear-flow times.

-

FIG. 7. The collapse of the data from Fig. 5 using the char
teristic time in Eq.~3! for capillary numbers@Nc51.3331025 ~1!,
Nc52.6531025 ~h!, Nc55.331025 ~s!, Nc52.1231024 ~-!,
Nc58.831024 ~j!#.

FIG. 8. The data from Figs. 6 and 7 are combined.
1-5
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FERER, BROMHAL, AND SMITH PHYSICAL REVIEW E67, 051601 ~2003!
Although the large-time flows for our small systems ha
not achieved the linear-flow regime, it is clear that they
tending towards that behavior. Furthermore, the nega
slopes in the crossover regime in Fig. 10 cannot be susta
and only represent a temporary filling-in of the small-x re-
gions of the porous medium. Therefore, we have clear
dence for the crossover or transition from early-time IPW
model fractal flow to late-stage linear flow beginning at
characteristic time that varies inversely with the capilla
number.

IV. TIME-DEPENDENT CORRELATIONS

The space-time correlations studied in this section are
contributions from all pairs of invaded pore bodies spatia
separated byDx in the average flow direction and byDy
perpendicular to the average flow direction and byDt in
time. That is, the first pore body in the pair located at~x, y!
was occupied at timet, while the second pore body at (x
1Dx,y1Dy) was occupied at timet1Dt. These pairs are

FIG. 9. ^x(t)/xIP& vs t for a single capillary number but a variet
of widths @sizes 30390 ~s!, 303135 ~h!, 303180 ~1!, 303225
~/\ !, and 303270 3!#. This indicates that the apparent size depe
dence in Fig. 8 is random.

FIG. 10. The average position of the injected fluid divided
time, ^x&/t for a variety of capillary numbers@Nc55.331026 ~�!,
Nc58.831026 ~d!, Nc51.3331025 ~1!, Nc52.6531025 ~h!,
Nc55.331025 ~s!, Nc51.0631024 ~x!, Nc52.1231024 ~-!,
Nc58.831024 ~j!, Nc53.531023 ~3!#.
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averaged over allx andy. Therefore, the correlation functio
is given by

C~Dx,Dy,t1Dt !5^n~x1Dx,y1Dy,t1Dt !n~x,y,t !&,
~5!

wheren(x,y,t)51 if the pore body at~x, y! was invaded at
time t, and zero otherwise. To study changes in the chara
of the flow as the fluid advances~i.e., as a function of timet!,
it is essential to maintain thet dependence, unlike the IPW
model correlations studied in Refs.@40–42# where one aver-
ages over this time dependence. In watching the tim
dependent simulation of the invasion, the role of avalanc
in the IPWT model is clear. During one avalanche, the flu
advance occurs in the localized region of that avalanc
then, the fluid advance occurs in the region of the next a
lanche ~spatially separated from the previous one!; and so
forth. Therefore, forDt less than the lifetime of an ava
lanche, the correlation function is short range because
correlated sites are usually within one avalanche. With
creased capillary number, this avalanche-to-avalanche s
ture breaks down. First, one sees two spatially separated
lanches occurring simultaneously, and eventually fluid fl
is distributed uniformly over the width of the porous m
dium. This relaxation~or crossover! from independent ava
lanches to the flow distributed uniformly over the wid
manifests itself in the mean square fluctuations of the co
lations perpendicular to the flow:

^~Dy2^Dy&!2& t

5 (
Dt,Dtmax

(
DxDy

~Dy2^Dy&!2C~Dx,Dy,t,Dt !.

~6!

To improve statistics, we have also summed over a sh
Dt,Dtmax. This value ofDtmax was chosen to be small com
pared to the time scale of the flow and is much less than
lifetime of the larger avalanches (Dtmax represents 100 time
steps for our 106 pore-body systems and 20 time steps
our 2700 pore-body systems!. Of course, averaging over
large system,Dy is just as likely to be positive as negative s
that ^Dy&'0. For the IPWT model the perpendicular flu
tuations, Eq.~6!, are consistent with the avalanche structu
see Fig. 11. For small times,t50, when the avalanches ar
close to the inlet where they tend to be smaller, one
short-time correlations (Dt,Dtmax) spread over the entire
width of the porous medium; as the injected fluid mov
further into the porous medium with advancing time, t
avalanches become larger@42# and the short-time correla
tions (Dt,Dtmax) become more localized signaled by a d
crease in these perpendicular fluctuations. Of course, if
sums over all values ofDt, these total fluctuations exten
over the full width of the porous medium, Fig. 11.

Figure 12 shows the perpendicular fluctuations@Eq. ~6!#
for our 30390 systems for the IPWT model, as well as for
variety of capillary numbers. For these small systems,
results for the IPWT model exhibit the same decrease see
Fig. 10, signaling the localization of the short-time corre

-
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PORE-LEVEL MODELING OF DRAINAGE: CROSSOVER . . . PHYSICAL REVIEW E 67, 051601 ~2003!
tions because of the large, well-defined avalanches for la
times. As the capillary number increases, the correlations
tially follow the IPWT model behavior and then break aw
to eventual constant time dependence. When one obse
the invasion visually, for small~but nonzero! capillary num-
ber, one sees invasion in two separate regions~two simulta-
neous avalanches!. As capillary number continues to in
crease, the avalanche structure disappears and the inv
occurs randomly over the whole width of the porous m
dium.

Figure 13 shows the average distance parallel to the fl

^Dx& t5 (
alL Dt

(
Dx,Dy

~Dx!C~Dx,Dy,t,Dt !, ~7!

FIG. 11. The perpendicular fluctuations@Eq. ~6!# vs time. The
heavy solid line shows the short-time@Dt,Dtmax50.04 ~100 time
steps!# perpendicular fluctuations, which decrease with time as
large avalanches begin to dominate, so that short times imply s
range correlations within one avalanche. The thinner~nearly hori-
zontal! solid line shows that the long-time~i.e., averaged over al
values ofDt) perpendicular fluctuations are spread over the en
porous medium.

FIG. 12. The short-time@Dt,Dtmax50.22 ~20 time steps!# per-
pendicular fluctuations for our 30390 systems for the IPWT mode
@Nc50.0 ~L!#, as well as for a variety of capillary numbers@Nc

55.331026 ~�!, Nc51.3331025 ~1!, Nc52.6531025 ~h!, Nc

55.331025 ~s!, Nc51.0631024 ~x!, andNc52.1231024 ~-!#.
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between correlated pore bodies for the large invasion pe
lation ~the IPWT model! systems. As should be expected, t
best power-law fit to these data predicts the same power
as was found for the average position of the injected fluid
Sec. III A. Again the data are sufficiently noisy, so they i
dicate only a slight preference for the value of fractal dime
sion D f51.89 overD f51.82; and again, we emphasize th
the main point of our work is not the value of fractal dime
sion for the IPWT model, but rather the crossover from fra
tal the IPWT model behavior to linear behavior at a char
teristic time that decreases as the capillary number increa
as is clearly shown in Figs. 3–12.

Consistent with the crossover seen in previous figur
Fig. 14 showŝ Dx& t from Eq. ~7! for a variety of capillary
numbers. Although these data are much noisier than the

e
rt

e

FIG. 13. ^Dx& t from Eq. ~7! ~solid gray line!, the average sepa
ration of correlated pore bodies parallel to the flow, for the la
(40032500) IPWT model systems. The dashed black line sho
the best power-law fit to the data (3.81t1.13). Note that the exponen
is the same as was used in fitting the average position of the
jected fluid.

FIG. 14. The mean separation^Dx(t)& ~averaged over allDt)
parallel to the flow for our 30390 systems for a variety of capillary
numbers @Nc55.331026 ~�!, Nc51.3331025 ~1!, Nc52.65
31025 ~h!, Nc55.331025 ~s!, Nc51.0631024 ~x!, and Nc

52.1231024 ~-!#.
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plotted in Figs. 4–10, there is still a clear tendency for
small-capillary-number data to mimic the IPWT model b
havior ~the horizontal line! while the larger-capillary-numbe
data are consistent with the previously observed cross
from the IPWT model at early times to a behavior consist
with the linear flow ~a straight line with a small negativ
slope^x&/t1.13}t20.13) at later times.

V. CONCLUSIONS

We have developed a pore-level model of immiscib
drainage with the following properties:~i! all pore throats
and pore bodies have finite volumes that can be occupie
either fluid,~ii ! local flow is dictated only by the local pres
sure differences,~iii ! complications are treated as physica
as possible,~iv! the flow rules accurately account for all o
the nonwetting fluid injected into the porous medium,~v! the
model has been validated~i.e., provides quantitatively cor
rect results! in the limits of zero-capillary number and o
zero viscosity ratio@29#.

For viscosity matching~viscosity ratioM51) with finite
capillary number, the early-time flows mimic those of t
invasion percolation with trapping model. At a characteris
time, these flows break away from the IPWT model frac
behavior and approach linear~Buckley-Leverett or ‘‘stable’’!
flows. The larger the capillary number the sooner this bre
away occurs, i.e., the smaller the characteristic time. T
crossover from the IPWT model to compact flow and t
associated fractal scaling are qualitatively similar to exp
mental results for the interfacial width in much larger sy
tems@30#. In this work, we relied on the time dependence
the first moment~average position! of the injected fluid as
well as on the time dependence of the parallel and perp
dicular correlations because these characteristics of the
depended upon the time from initial injection to brea
through, which was necessary to probe the crossover be
ior that we found. We found that our systems were too sm
to provide reliable results from box counting.

The seminal paper of Lenormand, Touboul, and Zarc
@6# demonstrated in what regimes of the viscosity-rat
capillary-number plane the different flow behaviors~compact
flow, viscous fingering, and capillary fingering! dominated.
Our results suggest that along the line of unit viscosity ra
large flows only exhibit capillary fingering in the limit o
zero-capillary number. That is, solely for zero-capillary nu
ber, is there no crossover. For any nonzero capillary num
although the flows will initially exhibit capillary fingering
for large enough flows they will eventually become compa

The data presented in Sec. III indicate that the charac
istic crossover time depends simply upon the capillary nu
ber, see Eq.~3!. For zero-capillary number, a similar cros
over was observed for viscous fingering in porous med
where the flows initially mimicked DLA fractal behavio
@43,11–14#. At a characteristic time, these flows break aw
from the DLA fractal behavior and approach line
~Buckley-Leverett or stable! flows. The larger the viscosity
of the injected fluid the sooner this breakaway occurs,
the smaller the characteristic time. In an earlier paper rep
ing this work, we demonstrated that the power-law behav
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of the first moment and the related power-law behavior of
saturation and fractional flow profiles lead to definite pred
tions for these profiles in the linear-flow regimes~i.e., post-
crossover! @13#. Because of the corresponding relationsh
between the moment and the profiles for the present c
@42# and the corresponding role of the characteristic cro
over time@Eq. ~3!#, one is led to the corresponding behavi
for these profiles in the post-crossover regimes (t@t):

S~x,t,Nc!5t2«s~t2«x/t ! ~8!

and

F~S,Nc!5f~t«S!, ~9!

wheres andf are monotonic functions.
These predictions were successfully tested in the prev

case@13#. To test these predictions for the present case i
important to have an estimate of when the flows will exhi
linear behavior for different capillary numbers. Towards th
end, we have attempted a heuristic fit of the data in Fig. 6
the hope that such a fit will provide a plausible estimate
when the flows will become linear. As is shown in Fig. 1
this heuristic fit of the data worked credibly for the functio

K xNc

xIPWT
L

fit

5$ ln~e1aebu0.7
!%20.13/0.7, ~10!

where the best fit gavea50.000560.0002 andb59163.
This function has the correct forms in the small-u and large-u
regimes, and it approximates the data reasonably well in
crossover regime. Consequently, we hope that it provide
reasonable estimate of the times at which particu
capillary-number flows become linear.

In future work, we plan to check the predictions in Eq
~8! and ~9! guided by the predictions from Fig. 16 that th
flows become linear whent'@ ln(1/Nc)#2.5. We also plan to
investigate the changes in the crossover when the viscos
of the two fluids are not equal.

FIG. 15. The heuristic fit~solid line! of the function in Eq.~10!
to the data~3! in Fig. 6.
1-8
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APPENDIX: DETAILED DESCRIPTION OF THE MODEL

Our model is a generic pore-level model of the type t
has been widely used for the past two decades@6–8,11–
14,16–18,21,23,24,31–36#. Although our model has man
features in common with these other pore-level models in
literature, we choose to describe the model in some deta
that the reader can understand how our model compare
the others. A fully detailed description in the model is i
cluded in an earlier paper@29#.

Our model is intended to incorporate, as realistically
possible, both the capillary pressure that tends to block
invasion of narrow throats and the viscous pressure drop
flowing fluid. The two-dimensional porous medium w
modeled as a diamond lattice with a length scale,, ~Fig. 17!.
It consists of spherical pore bodies of volume,3

@(4p/3)r 35,3# at the lattice sites; connecting these po
bodies are cylindrical throats which are of length,, and have
a randomly chosen cross-sectional area between 0 an,2

(pR250→,2), i.e., there is equal probability for any are
between 0 and,2. Compared to several models reported
the recent literature, we believe that our model should
both more general and more flexible, in part because both
throats and the pore bodies have finite volume in compar
with ~i! Refs. @6#, @7#, @31#, where the throats contain zer
volume of fluid, and~ii ! Refs.@32–35#, where the pore bod
ies have zero volume. Furthermore, in our model, the v
umes of both the pore bodies and throats can be set as
sired. In this sense the work of Pereira is closer to our mo
but the latter work focuses on a model of three-phase flo
at constant pressure@36#. Of course all of these models in
clude the essential features of random capillary pressures
block the narrowest throats and a random conductivity t

FIG. 16. The behavior of the fitting function~solid line! ex-
tended into the regime aroundu51 where the flow becomes linea
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depends on the viscosity ratio.
In this section, we describe our model briefly; a mo

complete description was presented in a recent paper@29#.

1. Capillary pressure

When the invading fluid first enters one of the po
throats, the radius of curvatureR of the meniscus is fixed by
contact angleu and the radius of the pore throatr; R
5r /cosu. Therefore, the pressure drop across the menis
is the capillary pressure

Pcap~R!5
2s cosu

r
, ~A1!

where s is the surface tension. Thus, the flow velocity
given by the throat conductance times the total pressure d
across the throat, see Fig. 18,

q5gthroat~Pnw2Pw2Pcap!. ~A2!

In the model, the transmissibility~conductance! of the throat
is given by Poiseuille’s law,

gthroat5g*
~Athroat

2 /,4!

x1~12x!M
, ~A3!

FIG. 17. A portion of the two-dimensional porous medium
shown. The pore bodies, labeled by two even integers, occupy
sites of a diamond lattice. Adjacent pore bodies are connected
pore throats, labeled, as shown, by one even and one odd integ
this figure, flow is directed upwards, with the inlet being the botto
row of throats, and the outlet being the top. The diamond lat
structure assures that all throats are geometrically equivalent
regards to the average flow, in that the throats are not either par
or perpendicular to the average flow as they would be for a squ
lattice array.
1-9
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where Athroat is the cross-sectional area of the throat~ran-
domly chosen from a uniform distribution!, x is the fraction
of the throat of length, which is filled with defending fluid,
andM is the ratio of the nonwetting, invading fluid’s visco
ity to that of the wetting, defending fluid,M5m I /mD . The
quantity g* carries all the dimensionality ofgthroat, g*
5,3/(8pmD). Many of our results for the flow velocity ar
presented in terms ofq* 5q/g* , which is independent of the
particular value of the viscosity of the wetting fluid. Fro
Eq. ~A2!, the nonwetting fluid advances if the pressure d
ference between the pore filled with nonwetting fluid and
pore filled with wetting fluid exceeds the capillary pressu
Otherwise the nonwetting fluid will retreat.

To avoid problems with the abrupt change in capilla
pressure at the inlet of a throat, we have adopted the solu
used in Refs.@32–35#. Consistent with this work, we assum
that the capillary pressure increases from zero at the inle
a throat of radiusr and length, to the value in Eq.~A1! at
the center of the throat. This dependence is given by
equation

Pcap5
2s cosu

r
sin~px!, ~A4!

wherex is still the fractional distance along the throat from
to 1. Use of Eq.~A4! solves the programming problem
caused by the abrupt change in capillary pressure at a thr
inlet because the inlet of a throat will never be blocked sin
it has a zero-capillary pressure. If blocking occurs, it w
occur in the throat where the capillary pressure equals
pressure drop. The earlier work attempted to justify Eq.~A4!
physically, by arguing that real throats would have a grad
decrease in cross-sectional area accompanied by a gra
increase in capillary pressure; however, the throat volum
occupied by the fluids were volumes of uniform cylinde
@32–35#.

2. Finding the pressure field

Volume conservation of the incompressible fluid dicta
that the net volume flowq out of any pore body must b
zero. Let us consider application of the above rules to
situations in Fig. 19. In Fig. 19, the flow velocities direct
out of the~i, j! pore body through the throats are

qi 22,j 215gi 22,j 21~Pi , j2Pi 22,j 22!, ~A5a!

FIG. 18. A sketch showing the advance of the nonwetting fl
within a throat where the pressure drop exceeds the capillary p
sure, as given in Eqs.~A1!–~A3!.
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qi , j 115gi , j 11~Pi , j2Pi 12,j 122Pcap,i , j 11!,

qi 21,j5gi 21,j~Pi , j2Pi 22,j2Pcap,i 21 j !,

qi 11,j5gi 11,j~Pi , j2Pi 12,j2Pcap,i 11,j !.

Requiring that the net flow out of the pore body~i, j! be zero
leads to the following equation forPi , j :

~gi 22,j 211gi , j 111gi 21,j1gi 11,j !Pi , j

5~gi 22,j 21Pi 22,j 221gi , j 11Pi 12,j 121gi 21,j Pi 22,j

1gi 11,j Pi 12,j !1~gi , j 11Pcap,i , j 111gi 21,j Pcap,i 21 j

1gi 11,j Pcap,i 11,j !. ~A5b!

Equation~A5b! is of the general form

S ( gD Pi , j5S ( gPD1S ( f gPcapD , ~A6!

where~i! the sums are over the connected throats and p
bodies shown in Fig. 19,~ii ! the factorf is zero if there is no
meniscus in the throat,~iii ! the factorf is 11 if the pore body
~i, j! is filled with nonwetting fluid and the connecting po
body is filled with wetting fluid,~iv! the factorf is 21 if the
pore body~i, j! is filled with wetting fluid and the connecting
pore body is filled with nonwetting fluid. Implicit in this
discussion is the assumption that the pressure within a p
body is uniform. Assuming otherwise would require doin
full fluid dynamics using the Navier-Stokes equations. T
is inconsistent with the pore-level model approach and, gi
finite computer resources, this would severely limit the s
of the model porous medium. While Eq.~A4!, etc., are ide-
alizations of the real microscopic behavior, the model inc
porates the realistic characteristics of a random distribu
of conductances and correlated capillary pressures. Sig
cantly, the model has the correct dependencies@Eqs. ~A1!–
~A3!# upon throat radius for the flow velocity and for th

s-

FIG. 19. The fluid occupations near the~i, j! pore giving the
flow velocities in Eq.~A5!.
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capillary pressure that must be overcome for the nonwet
fluid to pass through the throat.

Once the location of the interface has been determin
the numerical value of the capillary pressure in each throa
known. The program then iterates Eq.~A6!, updating the
pressure field until convergence is achieved with a resid
less than some small value, that is, until

R5( ~Pnew2Pold!
2,«, ~A7!

where« is chosen to be small, e.g.,«51023 ~dyn/cm2!2. It
should be noted that, for the cases being considered, we
used a value of surface tension, such that 2s cosu/,
510 000 dyn/cm2. Therefore, the smallest pressure drop t
will advance the nonwetting fluid through a throat is 17 7
dyn/cm2, so that our value of the residual represents a fr
tional pressure change of less than 1027 in our 2700 pore-
body systems. This value of« was chosen to minimize run
time without jeopardizing mass conservation.

3. Flow rules

Once the pressure field has been determined, the inter
can be advanced through a time intervalDt. A throat is con-
sidered to be on the interface if the pore body at one
contains some wetting fluid~it may be filled with wetting
fluid! and if the pore body at the other end is fully invad
by nonwetting fluid~or was fully invaded and is not yet fully
E

f

ch

-
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reinvaded by wetting fluid due to backflow!. We found that
the time intervalDt had to be chosen with care. Of course,
the interval is too small, the computer program will be u
necessarily inefficient. However, if the interval is too larg
spurious oscillations occur in the fluid flow about the tr
equilibrium. Having determined the interface and chosen
time step, we have attempted to make the flow rules as
restrictive as possible.

Flow can increase the amount of nonwetting fluid with
the pore throat@Fig. 20~a!#, or the amount passing throug
the pore throat into the pore body@Fig. 20~b!#. Similarly,
backflow can cause the interface to retreat within the p
throat, or through the pore throat into the pore body. Con
tent with Refs. @32–35#, the flow rules assume that th
throats are cylindrical with cross sectionA and length,.

In summary, we have attempted to make the flow rules
nonrestrictive and reliable as possible.

FIG. 20. The flow rules allow the interface to advance~a! within
a throat~left figure! as well as~b! through a throat into the adjacen
pore body~right figure!.
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